Exercise 38

(a) If $f(x)=e^{x} /\left(2 x^{2}+x+1\right)$, find $f^{\prime}(x)$.
(b) Check to see that your answer to part (a) is reasonable by comparing the graphs of f and f^{\prime}.

Solution

Evaluate the derivative using the quotient rule.

$$
\begin{aligned}
f^{\prime}(x) & =\frac{d}{d x}\left(\frac{e^{x}}{2 x^{2}+x+1}\right) \\
& =\frac{\left[\frac{d}{d x}\left(e^{x}\right)\right]\left(2 x^{2}+x+1\right)-\left[\frac{d}{d x}\left(2 x^{2}+x+1\right)\right]\left(e^{x}\right)}{\left(2 x^{2}+x+1\right)^{2}} \\
& =\frac{\left(e^{x}\right)\left(2 x^{2}+x+1\right)-(4 x+1)\left(e^{x}\right)}{\left(2 x^{2}+x+1\right)^{2}} \\
& =\frac{\left(2 x^{2}-3 x\right) e^{x}}{\left(2 x^{2}+x+1\right)^{2}} \\
& =\frac{x(2 x-3) e^{x}}{\left(2 x^{2}+x+1\right)^{2}}
\end{aligned}
$$

Below is a graph of the function and its derivative versus x.

$f^{\prime}(x)$ is positive wherever $f(x)$ increases, $f^{\prime}(x)$ is zero wherever the slope of $f(x)$ is zero, and $f^{\prime}(x)$ is negative wherever $f(x)$ is decreasing. The answer to part (a) is reasonable then.

